Устойчивость конст­рукций здания

Устойчивость конст­рукций здания, которое разрушено в результате воздей­ствия случайных нагрузок, зависит от трех факторов. Это, во-первых, прочность материала и взаимное рас­положение конструктивных элементов и их несущая спо­собность; во-вторых, характер и величина усилий, кото­рые должна воспринять конструкция в результате воз­действия основных и дополнительных нагрузок, и, в тре­ьих, потенциальная энергия самой конструкции (при местном нарушении ее прочности и устойчивости).

Читать далее

ПОКРЫТИЕ СТАЛЕПРОВОЛОЧНО-КАНАТНОГО ЗАВОДА

В марте 1965 г. на строительстве сталепроволочного цеха сталепроволочно-канатного завода произошло обру­шение сборных железобетонных ферм и колонн.
Сталепроволочный цех представляет собой одноэтаж­ное здание, состоящее из семи пролетов размером 24 м каждый и пристройки бытовых помещений (рис. 19). Во всех пролетах предусмотрены мостовые краны гру­зоподъемностью 5 т. Высота цеха до отметки нижнего пояса ферм в шести пролетах 8,4 м и в одном крайнем пролете 10,8 м. Колонны, подкрановые балки, стропиль­ные фермы и плиты покрытия — типовые сборные желе­зобетонные. Шаг колонн и ферм 6 м. Плиты покрытия приняты 3X6 м. Утеплитель покрытия — пенобетонные плиты плотностью 600 кг/м3. Металлический фонарь со­стоит из пяти стоек и четырех раскосов. Проект цеха был разработан в 1962 г. специализированным проект­ным институтом.

Читать далее

Основные причины аварий в строительстве

Анализ аварий конструкций, зданий и сооружений позволяет установить основные причины аварий: дефекты и низкое качество строительно-монтажных работ, отступление от проектов при воз­ведении зданий и сооружений и их элементов, нарушение элемен­тарных правил монтажа и условий обеспечения жесткости и устой­чивости конструкций при проектировании и в процессе их возведе­ния, применение материалов и конструкций недостаточной прочности, замена материалов конструкций или их частей без санк­ции проектных организаций, недостатки проектных решений в со­вокупности с дефектами производства работ, перегрузка несущих конструкций в процессе эксплуатации, отсутствие надежных средств и методов антикоррозионной защиты. Как отмечалось, также одной из причин обрушений является недостаточная изученность работы некоторых конструкций под нагрузкой, дефектность, неполноцен­ность инженерно-геологических и гидрогеологических изысканий ос­нований.
Изучение причин аварий позволяет лучше понять закономерно­сти в работе конструкций, зданий и сооружений, привлечь внимание ученых, проектировщиков и строителей к недостаткам проектных решений, устранение которых должно предупредить аварии и тем самым обеспечить надежность сооружений.

Читать далее

Обрушение части крупнопа­нельного здания школы

В 1972 г. произошло обрушение части крупнопа­нельного здания школы. Здание состоит из трех корпу­сов— корпуса А высотой 4 этажа с размером в плане 16,8×12 м и корпусов Б и В высотой 2 этажа с разме­ром в плане соответственно 26,8X12,8 и 80X12 м (рис. 9).
Несущими конструкциями корпуса А являются по­перечные стены толщиной 15 см и ригели, расположен­ные в основном через 7,2 м, за исключением средней ча­сти между осями 10—17, где они расположены через 3,2 и 6,8 м. На несущие стены через ригели опираются мно­гопустотные панели перекрытий. Опирание панелей на ригели осуществляется в виде платформенного стыка. В соответствии с проектом торцы многопустотных пане­лей на участках опирания должны заполняться бетоном марки М 300.
Поперечные стены опираются на фундаментные па­нели с проемами для прохода по техническому под­полью. Фундаментные параметры опираются на сборные ленточные фундаменты из сборных железобетонных бло­ков-подушек (рис. 10).
Несущими конструкциями в осях 1—9 и 20—26 слу­жат железобетонные колонны высотой в 2 этажа и бал­ки пролетом 12 м, по которым уложены многопустотные панели покрытий.

Читать далее

Рассмотрение обстоятельств обрушения

При рассмотрении обстоятельств обрушения было установлено, что при изготовлении стропильных железо­бетонных ферм имели место отступления от проекта, не­достаточно осуществлялся контроль за выполнением отдельных операций, а опалубочные формы были низко­го качества. Каркасы растянутых раскосов ферм выпол­нялись не по проекту, в связи с чем анкеровка их в ниж­нем поясе уменьшена.
В ряде случаев применялись каркасы с изогнутыми поперечными стержнями. Принятая фиксация закладных деталей не обеспечивала их проектного положения. Детали, предназначенные для крепления стоек ме­таллического фонаря, не имели болтов с гай­ками.
Арматурные каркасы не имели соответствующих би­рок и складировались на земле внавал. При установке спорных закладных деталей в опалубку анкерные стерж­ни в отдельных случаях срезались, при этом они заменя­лись другими стержнями, приваренными к листу фланго­вым швом, либо вовсе отсутствовали.

Читать далее

СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ КАРКАС МНОГОЭТАЖНОГО ЗДАНИЯ

В апреле 1961 г. произошло обрушение каркаса, смонтированного из сборных железобетонных элементов. Здание имело десять этажей, из них девять над землей и один этаж подвальный. Конструкции здания состояли из сборного каркаса и наружных кирпичных самонесу­щих стен. Длина здания 56,6 м, ширина 21 м с сеткой колонн в поперечном направлении 6,55 + 6,4 + 6,55 м, шаг колонн в продольном направлении 6,1 м (рис. 1). Пол­ная высота здания 41 м.
Каркас представляет собой 10 железобетонных рам, расположенных поперек здания и состоящих из сборных элементов: колонн и ригелей (рис. 2). Междуэтажные перекрытия выполнены из сборных железобетонных плит размером 5,66X1,48 м.
По данным инженерно-геологических изысканий, ос­нованием для фундаментов здания являлись моренные суглинки с гравием и щебнем мощностью 2…5 м. Фунда­менты здания железобетонные монолитные из бетона марки М 300 в виде перекрестных лент.
Наружные стены кирпичные толщиной 51 см, запро­ектированы из семищелевых камней марок 100 и 75. Сое­динение сборных железобетонных элементов между собой предусмотрено на сварке с заделкой зазоров рас­твором и бетоном марок М 200…400.
В поперечном направлении расчетная схема была принята в виде 10-этажной рамы с жесткими узлами (рис. 3) и с колоннами, защемленными в фундаменте. В продольном направлении расчетная схема быала при­нята в виде рам, ригелями в которых должны были яв­ляться плиты перекрытий.

Читать далее

Завал конструкций, образовавшийся после обруше­ния

Завал конструкций, образовавшийся после обруше­ния части корпуса А, находился в основном внутри периметра его наружных стен. Только панели наружных стен нижнего этажа и части второго опрокинулись нару­жу за линии осей 1, Л а Н на 2…4 м. Панели верхних этажей этих стен упали внутрь здания. Последователь­ность обрушения конструкций и расположение послед­них в завале дают основание предполагать следую­щее:

Читать далее

Серьезные нарушения строительных норм и правил

В связи с тем что в закланных деталях ферм отсутство­вали специальные болты с гайками, предназначенные для крепления стоек фонаря, последние крепились к де­талям ферм только дуговой сваркой, а в ряде случаев крепление вовсе отсутствовало. При этом был приварен один из двух опорных уголков средней стойки фонаря, в результате чего опорная реакция передавалась на этот узел с эксцентриситетом, а также была снижена жест­кость сопряжения фонаря с фермами (крепление второ­го опорного уголка к закладной детали фермы осущест­вить не представилось возможным, так как расположе­ние закладной детали не соответствовало расположе­нию опорных уголков)\’. Швы между железобетонными плитами покрытия не были замоноличены, хотя утепли­тель укладывался по этому покрытию. По верхним поя­сам железобетонных ферм, расположенных у торцов фо­нарей, не были установлены предусмотренные проектом горизонтальные стальные связи в пределах ширины фо­наря.

Читать далее

Поверочный расчет узлов

Поверочный расчет узлов по измененной схеме рамы показал, что и в этом случае прочность поперечных рам достаточна. По проекту прочность и устойчивость карка­са здания вследствие отсутствия продольных ригелей поставлена в зависимость от жесткости узлов сопряже­ний плит с ригелями и способности ригелей воспри­нять крутящий момент от плит и передать его на ко­лонны.
Как показал поверочный расчет, конструкция плит перекрытий и их соединения между собой через сталь­ные накладки по углам не обеспечивают достаточной прочности узлов сопряжений. Моменты, возникающие в этих местах под действием ветровой нагрузки (при от­сутствии полезной) в наиболее слабом сечении (в зоне плит за пределами закладных деталей), должны быть восприняты двумя стержнями арматуры плит, имеющи­ми диаметр 8 мм, и частично арматурой сеток.

Читать далее

Причина обрушения

Непосредственной причиной обрушения явилось, по-видимому, оттаивание раствора в нижнем шве южной торцевой стены корпуса А. Аналогичный шов на сохра­нившемся северном крыле здания имеет толщину 8… 12 см и выполнен из очень слабого раствора. Можно полагать, что он был таким же и на южном крыле. При оттаивании он, естественно, потерял прочность прежде всего снаружи здания, и южная торцевая стена утрати­ла устойчивость, Падая от здания, т. е. на юг, она повлекла за собой и перекрытия, которые в свою очередь потащили все поперечные стены, включая стену лестнич­ной клетки по оси 10.

Читать далее