Причины аварии силоса

В результате установлено, что в процессе строитель­ных работ были допущены значительные отступления от проекта: кольцевая арматура была уложена в количест­ве, значительно меньшем проектного; толщина стенок в отдельных случаях составляла 15,5… 16 см вместо 18 см. Качество бетона, уложенного в сооружение, признано удовлетворительным.
С наружной стороны уцелевшей части стенки силоса № 7 была вскрыта кольцевая арматура в штрабе высо­той 3,5 м. Эквивалентное сечение установленной армату­ры составило 82 % проектного.

Читать далее

Обрушение монолитного железобетонного силоса, полностью загру­женного пластифицированным цементом

В 1954 г. на цементном заводе произошло обрушение монолитного железобетонного силоса, полностью загру­женного пластифицированным цементом в количестве 2600т.
Силосный корпус (рис. 24), состоящий из 12 цилин­дрических силосов, был построен по типовому проекту, разработанному в 1950 г. Проектом предусматривалось возведение цементных силосов из двух групп по 6 сило-сов в каждой группе. Высота силоса от днища до верха 26,7 м; внутренний диаметр 9,5 м; толщина стенки 18 см; бетон марки М 140. Армирование стенок силоса запро­ектировано из двойной гладкой арматуры в виде отдель­ных стержней с крюками.

Читать далее

Основные дефекты силосов

Учитывая, что основные дефекты силосов, построен­ных за время 1950—1961 гг., объясняются низким каче­ством строительных работ, СН 302—65 предусмотрены требования по повышению надежности сооружений. Ми­нимальная марка бетона принята М 200, при этом учи­тывается особенность укладки бетона в скользящую опа­лубку, в связи с чем расчетное сопротивление бетона на сжатие умножается на коэффициент 0,75. Усилены го­ризонтальная и вертикальная арматуры нижней зоны стен наружных силосов, а толщина наружных стен сило­сов диаметром 6 м увеличена с 16 до 18 см.

Читать далее

Теоретическое обоснование увеличения давления при выпуске сыпучего материала из силосов

Однако следует признать, что пока нет достаточно убедительного теоретического обоснования увеличений давлений при выпуске сыпучего материала из силосов и нужны дальнейшие теоретические и экспериментальные работы, направленные также на теоретическое обоснова­ние мероприятий по снижению горизонтальных давлений.

Читать далее

Анализ причин обрушений отдельных силосов и си­лосных корпусов

Анализ причин обрушений отдельных силосов и си­лосных корпусов, а также деформаций на других подоб­ных объектах показывает, что основными причинами об­рушений и деформаций явились: грубые нарушения пра­вил производства работ по возведению железобетонных сооружений в скользящих формах; отступления от проек­тов в процессе строительства; недостаточная квалифика­ция и отсутствие опыта в строительстве элеваторов у технического персонала строек; слабый технический кон­троль со стороны заказчика за соблюдением правил про­изводства работ.
Анализ обрушений силосов и силосных корпусов по­казывает, что действительная работа их под нагрузкой недостаточно изучена: вопросы распределения усилий в стенках силосов, влияния температурных напряжений, величины напряжений в нижних зонах силосных корпу­сов от реакций грунта и ряда других факторов подлежат дополнительному теоретическому и экспериментальному изучению.

Читать далее

Характер разрушения стенок силосного корпуса

Характер разрушения стенок силосного корпуса сви­детельствует об отсутствии монолитности конструкций и низкой прочности бетона во многих местах стенок сило­сов. В некоторых силосах и звездочках при производстве работ происходили сплошные горизонтальные срывы; бетон на высоте 4,3…5 м был смят на 30…60 см по вы­соте и разрушен. В сохранившихся частях стенок сило­сов № 301 и 308 в местах срывов бетон легко можно бы­ло разобрать руками. Это объясняется повреждением бетона в процессе его схватывания скользящими форма­ми вследствие срыва и нарушения структуры бетона.
 

Читать далее

ЖЕЛЕЗОБЕТОННЫЕ СИЛОСЫ

Несоблюдения технологических правил бетонирова­ния сооружений в подвижной опалубке и грубые нару­шения технических условий на производство строитель­ных работ имели место в силосных корпусах, построен­ных за последние годы.
При возведении железобетонных силосных корпусов и рабочих башен зерновых элеваторов в подвижной опа­лубке из-за недостаточного надзора и неправильного ве­дения работ были срывы бетона, места которых своевре­менно не заделывались качественным бетоном. Наблю­дался случай, когда под давлением зерна вывалилась стена силоса элеватора. Отмечены также факты переко­сов подвижных форм.

Читать далее

Серьезные нарушения строительных норм и правил

В связи с тем что в закланных деталях ферм отсутство­вали специальные болты с гайками, предназначенные для крепления стоек фонаря, последние крепились к де­талям ферм только дуговой сваркой, а в ряде случаев крепление вовсе отсутствовало. При этом был приварен один из двух опорных уголков средней стойки фонаря, в результате чего опорная реакция передавалась на этот узел с эксцентриситетом, а также была снижена жест­кость сопряжения фонаря с фермами (крепление второ­го опорного уголка к закладной детали фермы осущест­вить не представилось возможным, так как расположе­ние закладной детали не соответствовало расположе­нию опорных уголков)\’. Швы между железобетонными плитами покрытия не были замоноличены, хотя утепли­тель укладывался по этому покрытию. По верхним поя­сам железобетонных ферм, расположенных у торцов фо­нарей, не были установлены предусмотренные проектом горизонтальные стальные связи в пределах ширины фо­наря.

Читать далее

Рассмотрение обстоятельств обрушения

При рассмотрении обстоятельств обрушения было установлено, что при изготовлении стропильных железо­бетонных ферм имели место отступления от проекта, не­достаточно осуществлялся контроль за выполнением отдельных операций, а опалубочные формы были низко­го качества. Каркасы растянутых раскосов ферм выпол­нялись не по проекту, в связи с чем анкеровка их в ниж­нем поясе уменьшена.
В ряде случаев применялись каркасы с изогнутыми поперечными стержнями. Принятая фиксация закладных деталей не обеспечивала их проектного положения. Детали, предназначенные для крепления стоек ме­таллического фонаря, не имели болтов с гай­ками.
Арматурные каркасы не имели соответствующих би­рок и складировались на земле внавал. При установке спорных закладных деталей в опалубку анкерные стерж­ни в отдельных случаях срезались, при этом они заменя­лись другими стержнями, приваренными к листу фланго­вым швом, либо вовсе отсутствовали.

Читать далее

ПОКРЫТИЕ СТАЛЕПРОВОЛОЧНО-КАНАТНОГО ЗАВОДА

В марте 1965 г. на строительстве сталепроволочного цеха сталепроволочно-канатного завода произошло обру­шение сборных железобетонных ферм и колонн.
Сталепроволочный цех представляет собой одноэтаж­ное здание, состоящее из семи пролетов размером 24 м каждый и пристройки бытовых помещений (рис. 19). Во всех пролетах предусмотрены мостовые краны гру­зоподъемностью 5 т. Высота цеха до отметки нижнего пояса ферм в шести пролетах 8,4 м и в одном крайнем пролете 10,8 м. Колонны, подкрановые балки, стропиль­ные фермы и плиты покрытия — типовые сборные желе­зобетонные. Шаг колонн и ферм 6 м. Плиты покрытия приняты 3X6 м. Утеплитель покрытия — пенобетонные плиты плотностью 600 кг/м3. Металлический фонарь со­стоит из пяти стоек и четырех раскосов. Проект цеха был разработан в 1962 г. специализированным проект­ным институтом.

Читать далее