Архив рубрики: Обрушение зданий из железобетонных конструкций
Основная причина обрушения каркаса здания
Комиссия рекомендовала обследовать все здания, возводимые методом подъема перекрытий, и продолжить их строительство после устранения всех технологических отклонений и обеспечения проектных решений.
Устойчивость конструкций здания
ПОКРЫТИЕ СТАЛЕПРОВОЛОЧНО-КАНАТНОГО ЗАВОДА
Сталепроволочный цех представляет собой одноэтажное здание, состоящее из семи пролетов размером 24 м каждый и пристройки бытовых помещений (рис. 19). Во всех пролетах предусмотрены мостовые краны грузоподъемностью 5 т. Высота цеха до отметки нижнего пояса ферм в шести пролетах 8,4 м и в одном крайнем пролете 10,8 м. Колонны, подкрановые балки, стропильные фермы и плиты покрытия — типовые сборные железобетонные. Шаг колонн и ферм 6 м. Плиты покрытия приняты 3X6 м. Утеплитель покрытия — пенобетонные плиты плотностью 600 кг/м3. Металлический фонарь состоит из пяти стоек и четырех раскосов. Проект цеха был разработан в 1962 г. специализированным проектным институтом.
Основные причины аварий в строительстве
Изучение причин аварий позволяет лучше понять закономерности в работе конструкций, зданий и сооружений, привлечь внимание ученых, проектировщиков и строителей к недостаткам проектных решений, устранение которых должно предупредить аварии и тем самым обеспечить надежность сооружений.
Обрушение части крупнопанельного здания школы
Несущими конструкциями корпуса А являются поперечные стены толщиной 15 см и ригели, расположенные в основном через 7,2 м, за исключением средней части между осями 10—17, где они расположены через 3,2 и 6,8 м. На несущие стены через ригели опираются многопустотные панели перекрытий. Опирание панелей на ригели осуществляется в виде платформенного стыка. В соответствии с проектом торцы многопустотных панелей на участках опирания должны заполняться бетоном марки М 300.
Поперечные стены опираются на фундаментные панели с проемами для прохода по техническому подполью. Фундаментные параметры опираются на сборные ленточные фундаменты из сборных железобетонных блоков-подушек (рис. 10).
Несущими конструкциями в осях 1—9 и 20—26 служат железобетонные колонны высотой в 2 этажа и балки пролетом 12 м, по которым уложены многопустотные панели покрытий.
Рассмотрение обстоятельств обрушения
В ряде случаев применялись каркасы с изогнутыми поперечными стержнями. Принятая фиксация закладных деталей не обеспечивала их проектного положения. Детали, предназначенные для крепления стоек металлического фонаря, не имели болтов с гайками.
Арматурные каркасы не имели соответствующих бирок и складировались на земле внавал. При установке спорных закладных деталей в опалубку анкерные стержни в отдельных случаях срезались, при этом они заменялись другими стержнями, приваренными к листу фланговым швом, либо вовсе отсутствовали.
СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ КАРКАС МНОГОЭТАЖНОГО ЗДАНИЯ
Каркас представляет собой 10 железобетонных рам, расположенных поперек здания и состоящих из сборных элементов: колонн и ригелей (рис. 2). Междуэтажные перекрытия выполнены из сборных железобетонных плит размером 5,66X1,48 м.
По данным инженерно-геологических изысканий, основанием для фундаментов здания являлись моренные суглинки с гравием и щебнем мощностью 2…5 м. Фундаменты здания железобетонные монолитные из бетона марки М 300 в виде перекрестных лент.
Наружные стены кирпичные толщиной 51 см, запроектированы из семищелевых камней марок 100 и 75. Соединение сборных железобетонных элементов между собой предусмотрено на сварке с заделкой зазоров раствором и бетоном марок М 200…400.
В поперечном направлении расчетная схема была принята в виде 10-этажной рамы с жесткими узлами (рис. 3) и с колоннами, защемленными в фундаменте. В продольном направлении расчетная схема быала принята в виде рам, ригелями в которых должны были являться плиты перекрытий.