Испытания конструкций крупнопанельных зданий

Испытания конструкций крупнопанельных зданий, которые описываются ниже, преследовали две цели: ис­следовать влияние новых требований, изложенных в дополнении, на повышение надежности конструкций из сборных железобетонных панелей, находящихся под нагрузкой, и исследовать поведение стыков между панеля­ми при групповой работе панелей.
Для проведения испытаний были выбраны модели участка торцевой стены в обычной конструкции крупно­панельного здания с несущими взаимно пересекающими­ся стенами. Панели конструкции были выполнены из железобетона в масштабе 1 : 2 и приняты трех типов.

Данные физико-механических испытаний

По данным физико-механических испытаний бетонов отмечается соответствие фактической прочности бетонов колонн и перекрытий проектной марке. Неудовлетвори­тельное качество бетонирования отдельных участков яд­ра жесткости, а также повышенное содержание углерода в арматурной стали колонн, хотя и повлекли снижение несущей спсобности конструкций, по заключению экс­пертной комиссии, не могли явиться причиной обруше­ния.
Расчеты показали, что отклонение колонн от верти­кали не является причиной обрушения, так как при на­личии раскрепления плит с ядром жесткости и фактиче­ских величинах вертикальных нагрузок (до 50 % рас­четных) отклонение колонн до 25 мм от вертикали при
отсутствии поперечных сил не могло исчерпать несущую способность каркаса здания.

Зависи­мость между разрушающей нагрузкой и количеством ар­матуры в шве между панелями

Результаты испытаний модели показывают, что в этом случае существует относительно простая зависи­мость между разрушающей нагрузкой и количеством ар­матуры в шве между панелями. Такой вывод подтверж­дается тем фактом, что основной причиной разрушений для всех опытов с этой конструкцией явились напряже­ния при изгибе с достижением арматурной стали в шве напряжения, равного пределу текучести на растяжение и без разрушения бетона, заполняющего шов в процессе его сжатия. Выявлено, что в результате простого расче­та на изгиб можно с достаточной точностью определить величину разрушающей нагрузки для такого вида кон­струкции. В этом расчете необходимо учитывать прежде всего изгибающие моменты относительно нижней точки поворота консоли с плечом от верхнего до нижнего яруса арматуры, а также иметь в виду, что вся арматура в се­чении вертикального шва достигает предел текучести в момент, когда на конструкцию действует разрушающая нагрузка.

Основная причина обрушения каркаса здания

Экспертная комиссия на основе рассмотрения проектно-технической документации, результатов физико-ме­ханических характеристик бетонов, арматуры, стальных грузовых тяг подъемников, полученных в результате испытания образцов, установила, что основной причиной обрушения каркаса здания является нарушение отдель­ных операций ехнологического процесса (несвоевремен­ная установка и удаление металлических клиньев в за­зорах между ядром жесткости и плитами перекрытий, частичное отсутствие деревянных клиньев в захватных гнездах, фиксирующих грузовые тяги подъемников).
Комиссия рекомендовала обследовать все здания, возводимые методом подъема перекрытий, и продолжить их строительство после устранения всех технологических отклонений и обеспечения проектных решений.

Устойчивость конст­рукций здания

Устойчивость конст­рукций здания, которое разрушено в результате воздей­ствия случайных нагрузок, зависит от трех факторов. Это, во-первых, прочность материала и взаимное рас­положение конструктивных элементов и их несущая спо­собность; во-вторых, характер и величина усилий, кото­рые должна воспринять конструкция в результате воз­действия основных и дополнительных нагрузок, и, в тре­ьих, потенциальная энергия самой конструкции (при местном нарушении ее прочности и устойчивости).

ПОКРЫТИЕ СТАЛЕПРОВОЛОЧНО-КАНАТНОГО ЗАВОДА

В марте 1965 г. на строительстве сталепроволочного цеха сталепроволочно-канатного завода произошло обру­шение сборных железобетонных ферм и колонн.
Сталепроволочный цех представляет собой одноэтаж­ное здание, состоящее из семи пролетов размером 24 м каждый и пристройки бытовых помещений (рис. 19). Во всех пролетах предусмтрены мостовые краны гру­зоподъемностью 5 т. Высота цеха до отметки нижнего пояса ферм в шести пролетах 8,4 м и в одном крайнем пролете 10,8 м. Колонны, подкрановые балки, стропиль­ные фермы и плиты покрытия — типовые сборные желе­зобетонные. Шаг колонн и ферм 6 м. Плиты покрытия приняты 3X6 м. Утеплитель покрытия — пенобетонные плиты плотностью 600 кг/м3. Металлический фонарь со­стоит из пяти стоек и четырех раскосов. Проект цеха был разработан в 1962 г. специализированным проект­ным институтом.

Основные причины аварий в строительстве

Анализ аварий конструкций, зданий и сооружений позволяет установить основные причины аварий: дефекты и низкое качество строительно-монтажных работ, отступление от проектов при воз­ведении зданий и сооружений и их элементов, нарушение элемен­тарных правил монтажа и условий обеспечения жесткости и устой­чивости конструкций ри проектировании и в процессе их возведе­ния, применение материалов и конструкций недостаточной прочности, замена материалов конструкций или их частей без санк­ции проектных организаций, недостатки проектных решений в со­вокупности с дефектами производства работ, перегрузка несущих конструкций в процессе эксплуатации, отсутствие надежных средств и методов антикоррозионной защиты. Как отмечалось, также одной из причин обрушений является недостаточная изученность работы некоторых конструкций под нагрузкой, дефектность, неполноцен­ность инженерно-геологических и гидрогеологических изысканий ос­нований.
Изучение ричин аварий позволяет лучше понять закономерно­сти в работе конструкций, зданий и сооружений, привлечь внимание ученых, проектировщиков и строителей к недостаткам проектных решений, устранение которых должно предупредить аварии и тем самым обеспечить надежность сооружений.

Обрушение части крупнопа­нельного здания школы

В 1972 г. произошло обрушение части крупнопа­нельного здания школы. Здание состоит из трех корпу­сов— корпуса А высотой 4 этажа с размером в плане 16,8×12 м и корпусов Б и В высотой 2 этажа с разме­ром в плане соответственно 26,8X12,8 и 80X12 м (рис. 9).
Несущими конструкциями корпуса А являются по­перечные стены толщиной 15 см и ригеи, расположен­ные в основном через 7,2 м, за исключением средней ча­сти между осями 10—17, где они расположены через 3,2 и 6,8 м. На несущие стены через ригели опираются мно­гопустотные панели перекрытий. Опирание панелей на ригели осуществляется в виде платформенного стыка. В соответствии с проектом торцы многопустотных пане­лей на участках опирания должны заполняться бетоном марки М 300.
Поперечные стены опираются на фундаментные па­нели с проемами для прохода по техническому под­полью. Фундаментные параметры опираются на сборные ленточные фудаменты из сборных железобетонных бло­ков-подушек (рис. 10).
Несущими конструкциями в осях 1—9 и 20—26 слу­жат железобетонные колонны высотой в 2 этажа и бал­ки пролетом 12 м, по которым уложены многопустотные панели покрытий.

Рассмотрение обстоятельств обрушения

При рассмотрении обстоятельств обрушения было установлено, что при изготовлении стропильных железо­бетонных ферм имели место отступления от проекта, не­достаточно осуществлялся контроль за выполнением отдельных операций, а опалубочные формы были низко­го качества. Каркасы растянутых раскосов ферм выпол­нялись не по проекту, в связи с чем анкеровка их в ниж­нем поясе уменьшена.
В ряде случаев применялись каркасы с изогнутыми поперечными стержнями. Принятая фиксация закладных деталей не обеспечивала их проектного положения. Детали, предназначенные для крепления стоек ме­таллического фонаря, не имели болтов с гай­ками.
Арматурные каркасы не имели соответствующих би­рок и складировались на земле внавал. При установке спорных закладных деталей в опалубку анкерные стерж­ни в отдельных случаях срезались, при этом они заменя­лись другими стержнями, привареннми к листу фланго­вым швом, либо вовсе отсутствовали.

СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ КАРКАС МНОГОЭТАЖНОГО ЗДАНИЯ

В апреле 1961 г. произошло обрушение каркаса, смонтированного из сборных железобетонных элементов. Здание имело десять этажей, из них девять над землей и один этаж подвальный. Конструкции здания состояли из сборного каркаса и наружных кирпичных самонесу­щих стен. Длина здания 56,6 м, ширина 21 м с сеткой колонн в поперечном направлении 6,55 + 6,4 + 6,55 м, шаг колонн в продольном направлении 6,1 м (рис. 1). Пол­ная высота здания 41 м.
Каркас представляет собой 10 железобетонных рам, расположенных поперек здания и состоящих из сборных элементов: колонн и ригелей (рис. 2). Междуэтажные перекрытия выполнены из сборных железобетонных плит размером 5,66X1,48 м.
По данным инженерно-геологических изысканий, ос­нованием для фундаментов здания являлись моренные суглинки с гравием и щебнем мощностью 2…5 м. Фунда­менты здания железобетонные монолитные из бетона марки М 300 в виде перекрестных лент.
Наружные стены кирпичные толщиной 51 см, запро­ектированы из семищелевых камней марок 100 и 75. Сое­динение сборных железобетонных элементов между собой предусмотрено на сварке с заделкой зазоров рас­твором и бетоном марок М 200…400.
В поперечном направлении расчетная схема была принята в виде 10-этажной рамы с жесткими узлами (рис. 3) и с колоннами, защемленными в фундаменте. В продольном направлении расчетная схема быала при­нята в виде рам, ригелями в которых должны были яв­ляться плиты перекрытий.