Определение качества металла

Для определения качества металла, из которого уста­новлены металлические конструкции, были исследованы пробы от обрушившихся конструкций. Заводская лабо­ратория произвела химический анализ и дала определе­ние основных механических характеристик исследуемой стали.

Читать далее

Данные химического и механического испытания металла

По данным химических и механических испытаний можно сделать вывод, что исследованный металл толщи­ной 30…32 мм является преимущественно кипящей ста­лью наиболее низкого качества и соответствует группе А без гарантированного химического состава.
Сталь отличается резко выраженной ликвацией по содержанию углерода и серы, причем в отдельных точках вблизи места предполагаемого очага разрушения содер­жание углерода было 0,38…0,4 %, что подтверждено хи­мическим анализом и проверкой микроструктуры. Такая сталь отличается повышенной хладноломкостью по срав­нению со сталью с гарантированным химическим соста­вом и не пригодна для сварных конструкций, работаю­щих в условиях отрицательных температур. Произведен­ный поверочный расчет фермы по оси 31 показал, что она имела максимальное напряжение в поясе от факти­ческих нагрузок около 103 МПа вместо 210 МПа, что составляет примерно 50 %.

Читать далее

Обрушение конвейерной галерии

Обрушение конвейерной галерии было предметом специального рассмотрения в Госстрое СССР. Было установлено, что пролеты конвейерной галереи обру­шились вследствие недостаточной несущей способности металлической опоры, которая деформировалась при нагрузке, достигшей всего лишь 73 % расчетной, при воздействии на нее незначительных дополнительных горизонтальных сил, возникших при пуске транспор­тера.
При монтаже металлоконструкций галереи допуще­но смещение опорных плит поперечных ферм против опорных плит продольных ферм и колонн, что не обес­печило качественной сварки швов в узлах сопряжения этих плит.

Читать далее

Исследование и анализ характера разрушения

Из приведенных исследований и анализа характера разрушения следует, что основной металл соответство­вал требованиям проекта и обладал высокими механи­ческими свойствами. Сварные соединения под нагрузкой имели прочность не ниже основного металла. Об этом говорит также характер разрушения. В большей части разрыв проходит по основному металлу, близ швов, и лишь в нижнем поясе — по стыковому шву.

Читать далее

Начало цепи событий, приведших к катастрофе

Выбор способа монтажа боковых пролетных строений положил начало цепи событий, приведших к катастрофе. В контракте на строительство, как обычно, не был опре­делен способ монтажа конструкций. Было принято ре­шение изготовить две монтажные секции пролетного строения непосредственно на земле рядом с опорами, на которые должно было устанавливаться пролетное строение. Ширина каждой секции равнялась половине ширины пролетного строения (18,5 м), а длина соответ­ствовала полной длине пролетного строения (112) м. По окончании сборки монтажная секция поднималась до отметки верха опоры и перемещалась по вспомогатель­ным балкам в поперечном направлении до проектного положения на дальней стороне опоры. Затем на том же месте производилась сборка второй монтажной секции, после чего операции повторялись. Обе монтажные сек­ции должны были соединяться на болтах.

Читать далее

Разрушение мола в результате сильного шторма

В феврале 1978 г. в результате сильного шторма был разрушен начатый строительством в 1973 г. мол, ограж­дающий гавань порта Синиш в Португалии (рис. 106). Этот мол — один из самых крупных сооружений подоб­ного типа. Мол предназначался для защиты порта от океанской волны и для прокладки нефтепроводов. Тело мола запроектировано откосного типа и отсыпано из горной (карьерной) смеси в виде несортированного кам­ня с укреплением откосов крупным камнем.

Читать далее

СБОРНЫЙ ЖЕЛЕЗОБЕТОННЫЙ КАРКАС МНОГОЭТАЖНОГО ЗДАНИЯ

В апреле 1961 г. произошло обрушение каркаса, смонтированного из сборных железобетонных элементов. Здание имело десять этажей, из них девять над землей и один этаж подвальный. Конструкции здания состояли из сборного каркаса и наружных кирпичных самонесу­щих стен. Длина здания 56,6 м, ширина 21 м с сеткой колонн в поперечном направлении 6,55 + 6,4 + 6,55 м, шаг колонн в продольном направлении 6,1 м (рис. 1). Пол­ная высота здания 41 м.
Каркас представляет собой 10 железобетонных рам, расположенных поперек здания и состоящих из сборных элементов: колонн и ригелей (рис. 2). Междуэтажные перекрытия выполнены из сборных железобетонных плит размером 5,66X1,48 м.
По данным инженерно-геологических изысканий, ос­нованием для фундаментов здания являлись моренные суглинки с гравием и щебнем мощностью 2…5 м. Фунда­менты здания железобетонные монолитные из бетона марки М 300 в виде перекрестных лент.
Наружные стены кирпичные толщиной 51 см, запро­ектированы из семищелевых камней марок 100 и 75. Сое­динение сборных железобетонных элементов между собой предусмотрено на сварке с заделкой зазоров рас­твором и бетоном марок М 200…400.
В поперечном направлении расчетная схема была принята в виде 10-этажной рамы с жесткими узлами (рис. 3) и с колоннами, защемленными в фундаменте. В продольном направлении расчетная схема быала при­нята в виде рам, ригелями в которых должны были яв­ляться плиты перекрытий.

Читать далее

Завал конструкций, образовавшийся после обруше­ния

Завал конструкций, образовавшийся после обруше­ния части корпуса А, находился в основном внутри периметра его наружных стен. Только панели наружных стен нижнего этажа и части второго опрокинулись нару­жу за линии осей 1, Л а Н на 2…4 м. Панели верхних этажей этих стен упали внутрь здания. Последователь­ность обрушения конструкций и расположение послед­них в завале дают основание предполагать следую­щее:

Читать далее

Серьезные нарушения строительных норм и правил

В связи с тем что в закланных деталях ферм отсутство­вали специальные болты с гайками, предназначенные для крепления стоек фонаря, последние крепились к де­талям ферм только дуговой сваркой, а в ряде случаев крепление вовсе отсутствовало. При этом был приварен один из двух опорных уголков средней стойки фонаря, в результате чего опорная реакция передавалась на этот узел с эксцентриситетом, а также была снижена жест­кость сопряжения фонаря с фермами (крепление второ­го опорного уголка к закладной детали фермы осущест­вить не представилось возможным, так как расположе­ние закладной детали не соответствовало расположе­нию опорных уголков)\’. Швы между железобетонными плитами покрытия не были замоноличены, хотя утепли­тель укладывался по этому покрытию. По верхним поя­сам железобетонных ферм, расположенных у торцов фо­нарей, не были установлены предусмотренные проектом горизонтальные стальные связи в пределах ширины фо­наря.

Читать далее

Результаты обследования и испытания материалов обрушившихся шедовых конструкций

В результате обследования и испытания материалов обрушившихся шедовых конструкций, а также шедового покрытия неэксплуатируемой части комбината было установлено следующее.
Два первых обрушившихся шеда в прошлом были за­бетонированы дважды; при распалубке бетон рассыпал­ся, и они были забетонированы вторично.

Читать далее