Проверка прочности разорванного среднего нижнего узла подстропильной фермы

Проверка прочности разорванного среднего нижнего узла подстропильной фермы Е в осях 36—38 показала:
по чертежу (рис. 40) КМ крепление раскоса рассчи­тано на усилие 1080 кН;
при разработке деталировочных чертежей КМД кон­струкция узла была изменена (рис. 40, б). Это измене­ние привело к уменьшению сварных швов и, следователь­но, прочности крепления раскоса до 40% расчетного;
завод металлоконструкций при изготовлении указан­ной подстропильной фермы допустил некачественное вы­полнение сварочного соединения указанного раскоса — уменьшенные размеры швов, непровары, поры, подре­зы. При этом несущая способность сварного соединения раскоса оказалась дополнительно сниженной ориентиро­вочно до 320 кН, что составляет уже около 30 % расчет­ного усилия по КМ;

Обрушение несущих конструкций на строительстве блока цехов

В марте 1973 г. на строительстве блока цехов сварных машиностроительных конструкций завода литья и метал­лических конструкций произошло обрушение несущих конструкций на площади 2592 м2 в пределах одного тем­пературного блока длиной 72 м. Обрушились семь метал­лических ферм пролетом 36 м с фонарем длиной 48 м, шириной 12 м и высотой 4,8 м и сборными железобетон­ными предварительно напряженными плитами покрытия размерами 3×12 и 1,5X12 м. Одновременно обрушились подкрановые балки, связи и другие конструкции.

Обрушение металлических ферм покрытия зрительного зала

В феврале 1974 г. на строительстве клуба произошло обрушение металлических ферм покрытия зрительного зала размером в плане 24X39 м. Металлические фермы пролетом 24 м имели шаг 6 и 3 м (рис. 65). По металли­ческим фермам под верхним поясом были уложены железобетонные ребристые плиты размером 1,5X6 м при шаге ферм 6 м и многопустотные плиты при шаге 3 м в осях С — Т. В осях Л — Н и У— Ф ребристые плиты опираются одним концом на верхний пояс ферм, дру­гим — на монолитные железобетонные пояса в кирпич­ных стенах.

Проверка изготовле­ния конструкций

Проверкой в натуре установлено, что при изготовле­нии конструкций были допущены серьезные отступления от проекта. Так, в некоторых заводских и монтажных уз­лах ферм второго пролета сварные швы были выполнены не по проекту; размеры их были уменьшены против раз­меров швов, предусмотренных КМД. Цементная стяжка пола и кровли выполнена толщиной 50…60 мм вместо толщины 15…30 мм, предусмотренной проектом. Масса железобетонных плит 250 кг/м2 вместо 196 кг/м2 по го­сударственному стандарту.

Читать далее

Обруше­ние несущих стальных конструкций части покрытия фабрики

В 1973 г. на строительстве прядильно-ткацкой фабри­ки вследствие загорания покрытия произошло обруше­ние несущих стальных конструкций части покрытия фабрики на площади 44 тыс. м2. Обрушилось и деформи­ровалось в общем объеме около 5 тыс. т металлических конструкций. Строительство фабрики было начато з 1971 г. К моменту обрушения заканчивались строитель­но-монтажные работы по первой очереди, было смонти­ровано и находилось в наладке прядильно-ткацкое обо­рудование.
Здание первой очереди фабрики состояло из сблоки­рованных двух частей: двухэтажной и одноэтажной с размерами в плане соответственно 216ХЮ8 и 216X96 м. Каркас здания выполнен из металлических колонн с сет­кой 12X18 м, подстропильных балок, стропильных ферм и прогонов (рис. 79).

Читать далее

Рекомендации специалистам по сварочным работам

После тщательного изучения причин аварий трубо­проводов и проведения ряда исследований специалисты по сварочным работам рекомендовали в дальнейшем выполнять следующие требования:
нагревать предварительно участки свариваемых изделий до температуры не менее 70 °С;
принимать толщину сварных швов не менее 0,7 толщины свариваемого листа (рис. 92). Как выясни­лось при обследовании, многие швы, выполненные в по­левых условиях, имели толщину 0,5 толщины листа, в то время как техническими условиями предусматрива­лась толщина швов не менее чем 0,8 толщины сварива­емого листа стали;
наплавлять дополнительный металл по нижнему краю шва, исключая тем самым резкий переход от по­верхности трубы к материалу шва, что вызывает на этом участке концентрацию напряжений.

Читать далее

Испытания образцов металла на ударную вязкость

Испытания образцов металла на ударную вязкость после механического старения показали, что по этому критерию сталь удовлетворяет требованиям проекта. Испытания на ударную вязкость при отрицательных тем­пературах показали, что по этому показателю сталь не­однородна и часть проката обладает недостаточной соп­ротивляемостью хрупкому разрушению при температуре —40 °С. По данному критерию сталь не удовлетворяет требованиям проекта.

Читать далее

Единые международные рекомендации по расчету и строительству сооружений из сборных элементов боль­шого размера

Во Франции начиная с 1966 г. крупнопанельные зда­ния проектируют в соответствии с Рекомендациями по крупнопанельному домостроению, разработанными со­вместно Европейским комитетом по бетону (СЕВ), Меж­дународным советом по строительству (СИБ) и Евро­пейским союзом по строительству.
Выпущенные Европейским комитетом по бетону «Единые международные рекомендации по расчету и строительству сооружений из сборных элементов боль­шого размера» регламентируют единую систему правил проектирования крупнопанельных сооружений в стра­нах Западной Европы. Согласно этим Рекомендациям, при проектировании и строительстве здания необходимо обеспечить такие условия работы конструкции, чтобы при действии необычных нагрузок здание не развалилось бы, как карточный домик.

Анализ этих возможных причин обрушения

Анализ этих возможных причин показал следующее. Отклонение здания от вертикали в связи с наклоном фундаментной плиты имело место в натуре. Вертикаль­ная съемка поверхности плиты, выполненная после рас­чистки завала по сетке 2X2 м, показывает ее наклон в сторону оси 11 относительно оси 1 на 4,2 см. Этот на­клон подтверждается также контрольной нивелировкой выравнивающей бетонной постели под фундаментные панели, частично сохранившиеся после разборки завала. Выравнивающая постель, выполненная до монтажа го­ризонтально, согласно схеме нивелировки имеет наклон до 4,4 см в сторону той же оси 11. Следует при этом принять во внимание, что поворот здания на 90° отно­сительно центра свайного поля привел к смещению центра его тяжести с оси симметрии свайного поля на 35 см в сторону оси 11, по которой отмечена просадка здания на 4,2…4,4 см. В связи с неравномерной просад­кой фундаментной плиты (на 4,2…4,4 см) конструкции верхней части смнтированного здания могли иметь от­клонения от вертикали на 9… 11 см. Такие отклонения могли быть своевременно вскрыты и предупреждены пу­тем инструментального контроля геометрических разме­ров при монтаже конструкций, что не было сделано.

Расчет цементных силосов

До 1948 г. для расчета цементных силосов пользова­лись формулами Янсена—Кенена, по которым определя­ли вертикальное и горизонтальное давления в силосах, загруженных цементом. При этом основными параметра­ми для определения давления принимали: угол внутрен­него трения для цемента ср=30° и коэффициент трения цемента по бетону f=0,58. Диаметр силосов принимался равным 11м при высоте силосов 22 м. Силосы связыва­ли между собой попарно и располагали в один ряд. В середине между парными силосами строили упаковоч­ную и лестничную клетки. Цемент выгружали цепными элеваторами или через донную галерею, оборудованную шнеками. Толщина стенок силосов принималась равной 18 см при армировании их кольцевой сеткой из армату­ры в один ряд с перепуском стыков на 20 диаметров. Бе­тон для стенок принимали марки Ml 10. По проекту с такими данными, в то время тиовому, было построено много силосов на цементных заводах.