Дополнительные требования о необходимости проведения испытаний стали металлических конструк­ций на загиб в холодном состоянии

В 1960 г. действующий до этого ГОСТ 380—57 был отменен и заменен ГОСТ 380—71, в котором устанавли­вались дополнительные требования о необходимости проведения испытаний стали металлических конструк­ций на загиб в холодном состоянии.
Поэтому перед началом строительства конвейерной галереи в марте 1962 г., учитывая, что конструкции ее были изготовлены в 1959 г., возник вопрос о возможно­сти применения этих конструкций для строительства галереи. Проектная организация на этот вопрос ответи­ла, что применение стальных конструкций галереи воз­можно после получения удовлетворительных результа­тов дополнительных испытаний стали конструкций на загиб в холодном состоянии согласно требованию дей­ствовавшего тогда ГОСТ 380—60.

Читать далее

Разрушение конструкции мостика на 4-м этаже

Разрушение конструкции мостика на 4-м этаже на­чалось с одного из узлов крепления подвесок к коробча­той балке. Продольный сварной шов, соединяющий швеллеры балки, разрушился, и нижние полки швелле­ров деформировались. В результате этого гайка с шай­бой, закрепляющая верхнюю подвеску, проскочила через образовавшееся отверстие. То же самое произошло и в других узлах крепления. Так как мостик 2-го этажа был подвешен к мостику 4-го этажа, то он обрушился одно­временно с верхним мостиком. После исследования от­печатков от удара мостиков о пол, а также обломков конструкций сделан вывод, что первым разрушился узел 9УЕ крепления подвески к средней коробчатой балке мостика 4-го этажа. На рис. 84 показан этот узел в раз­рушенном состоянии.
Для выяснения причин аварии мостиков и их состоя­ния в момент обрушения группа специалистов Нацио­нального бюро стандартов (НБС) США провела рассле­дование с использованием обломков мостиков. Были рассмотрены также рабочие чертежи конструкций, тех­нические условия и другие документы, а также показа­ния свидетелей обрушения и приведены детальные лабо­раторные исследования материалов, образцов конструк­ций и отдельных узлов мостиков из этих материалов.

Читать далее

Нарушение при производстве монтажа моста

В действительности при производстве монтажа моста эта последовательность была нарушена. Железобетон­ная проезжая часть в пролетах 1—2, 2—3 и 3—4 была уложена до окончания всех работ по навесной сборке моста. Более того, в пролетах 2—3 и 3—4 складировали плиты для последующих пролетов. При снятии замковых частей большинство заклепок было расклепано. Пове­рочные расчеты пролетного строения 3—4 на нагрузки, действовавшие в момент обрушения, показали, что про­веденная в нарушение проекта организации работ ук­ладка железобетонных плит на незаконченный монта­жом пролет привела к увеличению реакции опор до 274 кН (вместо 150 кН), что вызвало при отсутствии диафрагмы напряженное состояние опорного узла, пре­восходящее предел текучести и составляющее 490 МПа.

Читать далее

Акт освидетельствования оснований перед сооруже­нием фундаментов

Акт освидетельствования оснований перед сооруже­нием фундаментов подтверждает данные инженерно-гео­логических изысканий о том, что на проектной отметке залегал моренный суглинок. При выемке котлована уро­вень грунтовых вод не был достигнут. Контрольные скважины с отбором образцов грунта, заложенные после аварии, а также данные расчистки откосов у торцов зда­ния подтверждают, что фундаменты здания основаны на слое моренных суглинков, обладающих высокими проч­ностными характеристиками. Результаты бурения под­тверждают чередование грунтовых напластований, а также в основном их достаточную толщину. Прочность фундаментных лент, исходя из поверочного расчета, да­же при полной проектной нагрузке сомнений не вызыва­ет. Количество арматуры, уложенной в фундаментные ленты, превышает необходимое по расчету. По визуальной оценке прочность бетона в фундаментах соотет­ствуе проектной.

Анализ причины обрушения части крупнопа­нельного здания школы

Анализируя причины обрушения части крупнопа­нельного здания школы, целесообразно остановиться на принято-й в проекте основной конструктивной схеме зда­ния. В проекте несущими конструкциями являются пане­ли поперечных стен и ригели, являющиеся опорами для панелей перекрытий. Причем опорой для ригеля по оси А является довольно гибкая панель типа III, которая к тому же опирается на ригель через торцы панелей пере­крытий.
Такая схема требует абсолютной точности изготов­ления сопрягаемых элементов и тщательности выполне­ния соединений, что при монтаже конструкций здания школы не было обеспечено. На строительстве здания бы­ли нарушены требования строительных норм и правил к монтажу конструкций в зимнее время.

Теоретическое обоснование увеличения давления при выпуске сыпучего материала из силосов

Однако следует признать, что пока нет достаточно убедительного теоретического обоснования увеличений давлений при выпуске сыпучего материала из силосов и нужны дальнейшие теоретические и экспериментальные работы, направленные также на теоретическое обоснова­ние мероприятий по снижению горизонтальных давлений.

Ката­строфическое обрушение «Конгрессхалле»

До 1959 г. одноэтажные здания с шедовыми покры­тиями были основным объемно-планировочным решени­ем при проектировании и строительстве предприятий прядильно-ткацкого производства текстильной промыш­ленности. Шедовые покрытия решались с ориентацией световых проемов на север. В отличие от других видов фонарей шеды исключают попадание в цехи прямых сол­нечных лучей, которые затрудняют наблюдение за техно­логическим процессом.
Конструкции типовых шедовых ячеек непрерывно со­вершенствуются. Применялось большое число ячеек с различными сетками колонн и с различными конструк­тивными решениями: монолитные конструкции с сетками колонн 8X12, 9X12, 12×12 и 12×21 м; сборные желе­зобетонные, в том числе предварительно напряженные с сетками колонн 8Х 12 и 9Х 12 м.
Несмотря на это, строительство зданий с шедовыми покрытиями, особенно в районах с большими снеными покровами, встречае серьезные возражения вследствие трудности эксплуатации в зимнее время. Многолетний опыт эксплуатации таких зданий в ряде районов пока­зал, что шеды заносятся снегом, удаление которого прак­тически невозможно или связано с большими трудно­стями.
Так как в помещениях с шедовыми покрытиями из-за большого числа проемов верхнего света трудно поддер­живать средствами вентиляции требуемый температурно влажностный режим, то эти здания не являются опти­мальными

Обрушение покрытия печного отделения цементного завода

В 1973 г, произошло обрушение покрытия печного отделения цементного завода. Обрушились конструкции на площади около 1000 м2. В результате обрушения ос­тановились три вращающиеся печи.
Печное отделение, примыкающее к складу клинкера, представляет собой трехпролетное здание с пролетами по 12 м, состоящее из двух температурных блоков об­щей длиной 144 м (рис. 50).
Несущими конструкциями являются металлические стропильные и подстропильные фермы и колонны. Ко­лонны изготовлены из двух спаренных швеллеров № 30. Продольная устойчивость температурных блоков обеспе­чивается горизонтальными и портальными связями. За­водские соединения металлических конструкций свар­ные, монтажные — на болтах.

Анализ состояния обру­шившихся конструкций и нагрузок за весь период

Обрушение описываемых несущих конструкций по­крытия были рассмотрены научно-техническим советом ЦНИИПроектстальконструкции. Анализ состояния обру­шившихся конструкций и нагрузок за весь период по­казал:
при имевших место в течение двух зимних периодов (1970/71 и 1971/72 гг.) снеговых нагрузках и отсутствии утеплителя максимальные напряжения в конструкциях покрытия не превышали 140 МПа при расчетном сопро­тивлении металла 210 МПа. Таким образом, нагрузки не превышали расчетных и не могли являться причиной аварии;

Конструктивные мероприятия, устраняющие или ослабляющие концент­рацию напряжений в сварных соединениях

При разработке новых и переработке действующих типовых проектов сварных стальных конструкций, при проектировании сварных конструкций, на которые отсут­ствуют типовые проекты, а также при разработке черте­жей КМД в целях уменьшения опасности хрупкого раз­рушения металла в конструкциях в процессе их монта­жа и эксплуатации рекомендуется в дополнение к требо­ваниям НиТУ 121—55 предусматривать конструктивные мероприятия, устраняющие или ослабляющие концент­рацию напряжений в сварных соединениях в соответст­вии с «Конструктивными мероприятиями по предупреж­дению хрупкого разрушения сварных стальных конструк­ций», также приложенными к письму.