Причина обрушения

Непосредственной причиной обрушения явилось, по-видимому, оттаивание раствора в нижнем шве южной торцевой стены корпуса А. Аналогичный шов на сохра­нившемся северном крыле здания имеет толщину 8… 12 см и выполнен из очень слабого раствора. Можно полагать, что он был таким же и на южном крыле. При оттаивании он, естественно, потерял прочность прежде всего снаружи здания, и южная торцевая стена утрати­ла устойчивость, Падая от здания, т. е. на юг, она повлекла за собой и перекрытия, которые в свою очередь потащили все поперечные стены, включая стену лестнич­ной клетки по оси 10.

Читать далее

Расчетная проверка прочности коридорных, участков поперечных стен

Расчетная проверка прочности коридорных, участков поперечных стен, выполненных в зимних условиях в со­ответствии со всеми требованиями проекта, показывает, что прочность их в стадии оттаивания (при нулевой проч­ности раствора) оказывается значительно ниже требуе­мой СНиП.
Следует отметить, что указания по производству ра­бот в зимних условиях, приведенные в типовом проекте, являются весьма неудачными, так как они, с одной сто­роны, рекомендуют вводить в раствор такое малое коли­чество противоморозных добавок (5 % массы воды за-творения), которое не может обеспечить набор этим раствором прочности в зимних условиях, а с другой сто­роны не требуют устройства временного усиления или разгрузки коридорного участка поперечной стены на пе­риод оттаивания в соответствии с требованиями СНиП II-2-81 «Каменные и армокаменные конструкции. Нормы проектирования».

Читать далее

Причины обрушения части 4-этажного корпуса

Судя по характеристикам проектных решений здания школы, качеству использованных заводских изделий и качеству строительно-монтажных работ, можно сделать вывод о том, что обрушение части 4-этажного корпуса А вызвано несколькими причинами, главнейшими из которых являются:
 

Читать далее

Анализ причины обрушения части крупнопа­нельного здания школы

Анализируя причины обрушения части крупнопа­нельного здания школы, целесообразно остановиться на принято-й в проекте основной конструктивной схеме зда­ния. В проекте несущими конструкциями являются пане­ли поперечных стен и ригели, являющиеся опорами для панелей перекрытий. Причем опорой для ригеля по оси А является довольно гибкая панель типа III, которая к тому же опирается на ригель через торцы панелей пере­крытий.
Такая схема требует абсолютной точности изготов­ления сопрягаемых элементов и тщательности выполне­ния соединений, что при монтаже конструкций здания школы не было обеспечено. На строительстве здания бы­ли нарушены требования строительных норм и правил к монтажу конструкций в зимнее время.

Читать далее

Обрушение части здания жилого 5-этажного 8-секционного крупнопанельного дома

В 1975 г. на строительстве жилого 5-этажного 8-секционного крупнопанельного дома типовой серии 1-476А произошло обрушение части здания, ограниченной тем­пературными швами, в которой были смонтированы пять этажей. Монтаж здания выполнялся в зимних условиях. Конструктивная схема здания — внутренние поперечные стены толщиной 16 см с опирающимися на них через платформенные стыки многопустотными панелями (на­стилами) перекрытий высотой по проекту 22см. На уча­стке обрушения (рис. 12) разрушились все внутренние конструкции — несущие поперечные стены, продольные стены, перекрытия всех пяти этажей. Обрушившиеся кон­струкции образовали завал на высоту подвального эта­жа. Наружные стены были повреждены и находились в аварийном состоянии.

Читать далее

Выводы о причинах обрушения

Анализируя все перечисленные факты состояния зда­ния, можно сделать следующие выводы о причинах обрушения. В период оттаивания обрушению предшество­вала оттепель, растворные швы в платформенных стыках оттаяли, что вызвало значительную деформацию. В ряде мест наблюдалось выдавливание раствора из швов. Раз­личная толщина швов по длине вследствие различных высот сечений настилов в опорном узле обусловила пере­распределение вертикальной нагрузки в стыках. В ре­зультате значительная доля нагрузки пришлась на наи­более высокие опорные участки настилов перекрытий, что привело к их локальному разрушению. Отсутствие заделки бетоном открытых каналов в настилах усугуби­ло процесс их разрушения.

Читать далее

КРУПНОПАНЕЛЬНЫЕ ЗДАНИЯ

В 1968 г. в Лондоне вследствие взрыва газа произо­шло частичное обрушение 24-этажного крупнопанельного здания с поперечными несущими стенами. Здание соору­жено из панелей двух видов: железобетонных панелей перекрытий и неармированных несущих стеновых пане­лей. Взрывом газа на 18-м этаже были выбиты несущие угловые, несущие фасадные стеновые панели, служив­шие опорой для конструкций вышележащих этажей.

Читать далее

Обрушение крупнопанельного 15-этажного одно-секционного жилого дома

Обрушившийся крупнопанельный 15-этажный одно-секционный жилой дом на 89 квартир с техническим подпольем и размерами в плане 18,8X18 м при высоте этажей 2,7 м строился по типовому проекту.
Несущими конструкциями здания являются внутрен­ние поперечные железобетонные стеновые панели толщи­ной 14 см, на которые опираются панели перекрытий сплошного сечения толщиной 14 см. Стеновые панели запроектированы из тяжелого бетона: для нижних трех этажей — из бетона марки М 300 с усиленным армиро­ванием, с 4-го по 6-й этаж — также из бетона марки М 300 с конструктивным армированием и с 7-го по 15-й зтаж — из бетона марки М 200. Панели перекрытий для всех этажей — из бетона марки М 200. Цокольные несу­щие панели толщиной 18 см — из бетона марки М 300.

Читать далее

Нагрузки, значительно превосходящие предел упругой работы материалов

Обычно давления, возникающие при взрывах газа, создают нагрузки, значительно превосходящие предел упругой работы материалов. Поэтому единственный эко­номический способ расчета несущих элементов на дей­ствие кратковременных перегрузок состоит в том, чтобы использовать их запас прочности за пределами упруго­сти, т. е. использовать их вязкость или способность по­глощать энергию. Если исходить из того, что имеется достаточно данных о характеристиках ожидаемых пере­падов давлений и поведении сооружений под воздейст­вием этих перепадов, то при нормировании могут быть рассмотрены два варианта решения. Можно потребовать уменьшения вероятности взрыва газа, например, путем более строгого контроля за газовыми установками и вен­тиляцией или полного исключения применения газа в многоэтажных зданиях, как во Франции; либо установить требования, чтобы сооружения рассчитывались на необычные нагрузки.

Читать далее

Основные причины высокой дефектности панелей внутренних стен

Основными причинами высокой дефектности панелей внутренних стен признаны неудовлетворительное качест­во заполнителей, отклонения геометрических размеров, неплоскостности панелей, толщины и разности диагона­лей.
Поверочные испытания прочности бетона сохранив­шихся частей конструкций, отобранных при разборке за­вала, показали, что прочность бетона испытанных образ­цов составила 67…97 % проектной, а в среднем 82 %, что подтверждает обеспечение 70 % отпускной прочности при отгрузке изделий с завода.
 

Читать далее