Испытания образцов металла на ударную вязкость

Испытания образцов металла на ударную вязкость после механического старения показали, что по этому критерию сталь удовлетворяет требованиям проекта. Испытания на ударную вязкость при отрицательных тем­пературах показали, что по этому показателю сталь не­однородна и часть проката обладает недостаточной соп­ротивляемостью хрупкому разрушению при температуре —40 °С. По данному критерию сталь не удовлетворяет требованиям проекта.

Читать далее

Обру­шение пролетного строения строящегося мостав Мельбурне (Австралия)

В 1970 г. в Мельбурне (Австралия) произошло обру­шение пролетного строения строящегося моста. Мост представляет собой звено новой транспортной сети, за­проектированной для обслуживания Мельбурна и его пригородов. Общая длина моста вместе с эстакадными участками на подходах превышает 2600 м. Мост пред­назначен для пропуска четырехполосного движения транспорта (в каждом направлении). Эстакадные участ­ки образованы железобетонными предварительно напря­женными пролетными строениями длиной 48,5 и 67 м. Центральный участок моста перекрыт металлическими пролетными строениями. Общая протяженность мостово­го перехода около 5000 м.

Читать далее

Проверочные расчеты обрушившегося пролетного строения

Проверочные расчеты обрушившегося пролетного строения были выполнены в целях проверки правильно­сти расчетов, выполненных при проектировании пролет­ного строения, а также для оценки напряженного состоя­ния пролетного строения, имевшего место непосредст­венно перед его обрушением.
Для проверки были предъявлены расчеты типового пролетного строения 1957 г. для монолитной плиты про­езжей части и типового проекта 1961 г. также для моно­литной плиты проезжей части.

Читать далее

Начало цепи событий, приведших к катастрофе

Выбор способа монтажа боковых пролетных строений положил начало цепи событий, приведших к катастрофе. В контракте на строительство, как обычно, не был опре­делен способ монтажа конструкций. Было принято ре­шение изготовить две монтажные секции пролетного строения непосредственно на земле рядом с опорами, на которые должно было устанавливаться пролетное строение. Ширина каждой секции равнялась половине ширины пролетного строения (18,5 м), а длина соответ­ствовала полной длине пролетного строения (112) м. По окончании сборки монтажная секция поднималась до отметки верха опоры и перемещалась по вспомогатель­ным балкам в поперечном направлении до проектного положения на дальней стороне опоры. Затем на том же месте производилась сборка второй монтажной секции, после чего операции повторялись. Обе монтажные сек­ции должны были соединяться на болтах.

Читать далее

Обрушение неразрезного стального пролетного строе­ния моста

В результате анализа всех материалов установлено, что обрушение неразрезного стального пролетного строе­ния моста произошло в результате хрупкого разрушения стальных конструкций, возникшего вследствие крайне неблагоприятного сочетания следующих факторов: на­ступления резкого похолодания до необычно низкой для данного района температуры (—42 °С и ниже в пойме реки); наличия существенной неоднородности применен­ной в конструкциях стали по хладноломкости (с выпада­ми значений ударной вязкости значительно ниже требо­ваний проекта); динамичного воздействия временной нагрузки, проходившей по мосту с недозволенной скоро­стью (30 км/ч вместо 10 км/ч); нарушения других требо­ваний действующих нормативных документов.

Читать далее

Последовательности событий, при­ведших к катастрофе

Вторым звеном в последовательности событий, при­ведших к катастрофе, был метод, который использовался для выправления очертания собранных монтажных сек­ций. В отчете комиссии указывается, что в данных кон­кретных условиях следовало бы (и это был единственно правильный способ) опустить монтажные секции обрат­но на сборочные подмости и уже на них выправлять очертание. Однако подрядная фирма, которая намного отставала от графика и на которую нажимал заказчик, требовавший ускорения работ по изготовлению и монта­жу стальных конструкций, отказалась от этого способа.
 

Читать далее

Стадии обрушения про­летного строения

В день обрушения начались работы по удалению бол­тов в стыке между блоками № 4 и 5. Очевидно, действия­ми рабочих при выполнении этой операции руководил представитель консультирующей фирмы. После удаления нескольких болтов было обнаружено значительное сме­щение верхней плиты относительно своего первоначаль­ного положения, что привело к защемлению оставшихся болтов в отверстиях. Для удаления оставшихся болтов использовался пневматический гайковерт, с помощью которого болты подтягивали до тех пор, пока они не разрушились.

Читать далее

Обрушение двух металлических про­летных строения пятипролетного автодорожного моста

В конце 1967 г. обрушились два металлических про­летных строения пятипролетного автодорожного моста. Мост имел два крайних пролета по 42,5 м и три средних по 88 м (рис. 99). Мост был полностью смонтирован, а в трех первых пролетах была закончена укладка желе­зобетонной проезжей части. На двух пролетах (2—3 и 8—4) были сложены плиты для проезжей части после­дующих пролетов.

Читать далее

Нарушение при производстве монтажа моста

В действительности при производстве монтажа моста эта последовательность была нарушена. Железобетон­ная проезжая часть в пролетах 1—2, 2—3 и 3—4 была уложена до окончания всех работ по навесной сборке моста. Более того, в пролетах 2—3 и 3—4 складировали плиты для последующих пролетов. При снятии замковых частей большинство заклепок было расклепано. Пове­рочные расчеты пролетного строения 3—4 на нагрузки, действовавшие в момент обрушения, показали, что про­веденная в нарушение проекта организации работ ук­ладка железобетонных плит на незаконченный монта­жом пролет привела к увеличению реакции опор до 274 кН (вместо 150 кН), что вызвало при отсутствии диафрагмы напряженное состояние опорного узла, пре­восходящее предел текучести и составляющее 490 МПа.

Читать далее

По­теря местной устойчивости фасонки опорного узла и срез заклепок примыкающей к ней домкратной балки

Непосредственной причиной обрушения явились по­теря местной устойчивости фасонки опорного узла и срез заклепок примыкающей к ней домкратной балки. Мак­симальное усилие, которое могли воспринять эти за­клепки, работая в упругой стадии, не превышало 1220 кН; между тем, как показал поверочный расчет, возникшие усилия достигали 2700 кН. Столь значительное перена­пряжение заклепок вызвало неизбежный срез прикреп­ления домкратной балки к опорному узлу, что в свою очередь содействовало быстрому нарастанию усилий и еще большему деформированию фасонки опорного узла.

Читать далее